“极端光学创新研究团队”研究取得新进展

期次:第1404期       查看:76

北京大学物理学院创新团队开发出一种基于耗散型相互作用的无标记传感技术,成功实现了纳米尺度单颗粒的实时检测。该技术主要依赖于待测颗粒的极化率虚部,具有检测具有吸收性能的纳米颗粒的能力。该系列研究得到了科技部973计划、国家自然科学基金委项目等支持。




本报讯 日前,北京大学物理学院“极端光学创新研究团队”肖云峰研究员和龚旗煌院士在利用超高品质因子光学微腔增强传感灵敏度的基础上,开发出了一种基于耗散型相互作用的无标记传感技术,并成功实现了纳米尺度单颗粒的实时检测。这项最新研究成果近日在线发表在《物理评论:应用》(Physical Review Applied)上,并被同期评述为“朝着实用化光学传感迈进了重要一步”。
超高灵敏传感检测技术在环境监控、重大疾病早期预防和生化安全等方面具有十分重要的意义。然而,当待测颗粒物浓度极低且尺寸进入纳米量级时,检测变得极为困难。传统的光学微腔传感机制主要基于色散型相互作用,依赖于待测颗粒在腔模电场下的极化率实部。因此,当待测物的极化率实部趋于零时,色散型传感机制失效。
为了解决这个问题,创新团队成员创新地提出了基于耗散型相互作用的传感机制,其主要依赖于待测颗粒的极化率虚部,具体表现为微腔模式的线宽变化。实验上,他们以单个金纳米棒(40 nm × 16 nm)作为检测对象来评估传感器性能:当传感器工作在等离激元共振时,金棒极化率实部趋于零,导致色散型传感无法获得有效信号;而耗散型传感机制由于响应其虚部,则以较高信噪比实现了单个纳米颗粒的检测。基于耗散型相互作用的微腔传感机制不但有利于检测具有吸收性能的纳米颗粒,而且可以进一步结合色散型传感,得到待测颗粒的更多信息,从而扩充了纳米尺度单颗粒检测的维度。
该系列研究工作得到了科技部973计划、国家自然科学基金委项目、人工微结构和介观物理国家重点实验室及2011协同创新中心的支持。
(物理学院)
报刊导读